Chứng minh :
\(\frac{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}{\left(2017-x\right)^2-\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}\) \(=\)\(\frac{19}{49}\)
Giải phương trình sau:
\(\left(2\text{x}^2+x-2018\right)^2+4\left(x^2-5\text{x}-2017\right)^2\) = \(4\left(2\text{x}^2+x-2018\right)\left(x^2-5\text{x}-2017\right)\)
Rút gọn
\(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2017\right)\left(x+2018\right)}\)
Cho các số thực x,y,z thỏa mãn: x+2y+3z=0 và 2xy+6yz+3zx=0. Tính giá trị của biểu thức:
S=\(\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Giúp mik vs gấp quá !
cho x,y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\) 0 tính gtr biểu thức M = \(\left(x+y\right)^{2017}+\left(x-2\right)^{2018}+\left(y+1\right)^{2019}\)
Giải phương trình nghiệm nguyên
a) \(x^2+6x+17^{91}=2016^{2020}\)
b) \(x^2+2017^{2019}=2016\left(y-1\right)^2\)
c) \(x^2-2x=2017^{2017}\)
d) \(x^2+4x=2018^{10}\)
1) cho A=\(\frac{\left(x+2012\right)^2+2\left(x+2013\right)\left(x-2013\right)+\left(x-2012\right)^2}{\left(x^2-2012\right)+\left(x^2-2013\right)}\)
Tính giá trị A tại x=20162017
CMR: \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)
tìm GTLN
a)\(A=x^2+5y^2+2xy-4x-8y+2015\)
b)\(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
c)\(C=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
d)\(D=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)