Ta co: \(x-2\sqrt{x-1}=\left(x-1\right)-2\sqrt{x-1}+1=\left(\sqrt{x-1}\right)^2-2\cdot\sqrt{x-1}\cdot1+1^2=\left(\sqrt{x-1}-1\right)^2\)
Vay \(A=1+\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}=1+\sqrt{x-1}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=1+\sqrt{x-1}+\sqrt{x-1}-1=2\sqrt{x-1}\)