3 = 2^2 - 1
Áp dụng HĐT a^2 - b^2
kq : 2^128 - 1
3 = 2^2 - 1
Áp dụng HĐT a^2 - b^2
kq : 2^128 - 1
Thu gọn biểu thức sau :
a) \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{4}+1\right)\cdot\left(\frac{1}{16}+1\right)\cdot\cdot\cdot\left(1+\frac{1}{2^{2n}}\right)\)
b) \(\left(2+1\right)\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\cdot\left(2^{32}+1\right)-2^{64}\)
Tính \(C=\left(2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
Rút gọn:
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Rút gọn biểu thức:
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Rút gọn biểu thức:
a) \(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
b) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Bài 1 : rút gọn các biểu thức sau
A = \(\left(3x+1\right)^2-2\left(3x+1\right)\left(5x+5\right)+\left(5x+5\right)^2\)
B = \(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-b-a\right)^2\)
C = \(\left(3x+1\right)\left(3x^2+1\right)\left(3x^4+1\right)\left(3x^8+1\right)\left(3x^{16}+1\right)\left(3x^{32}+1\right)\)
\(A=\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\left(x^{16}-x^8+1\right)\left(x^{32}-x^{16}+1\right)\)
Rút gọn A dưới dạng phân thức
Câu 1: Rút gọn các biểu thức sau:
1. \(\left(x+y-z\right)^2+\left(y-z\right)^2+2z\left(z-y\right)\)
2. \(\left(3x+4\right)^2+\left(x-4\right)^2+2\left(3x+4\right)\left(x-4\right)\)
3.\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
4. \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)\)
5. \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Câu 2: Tìm x
1. \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=1\)
2. \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
3. \(\left(x+3\right)^2+\left(x-2\right)^2=2x^2\)
4. \(4x^2-9-x\left(2x-3\right)=0\)
5. \(4x^2-12x+9=0\)
Câu 3: Tìm GTNN
D = \(\left(2x-1\right)^2+\left(x+2\right)^2\)
Câu 4: Cho \(a^2+b^2+c^2=ab+bc+ac\) . Chứng minh rằng a=b=c
Rút gọn đa thức sau:
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)