\(C=1+2^2+2^4+...+2^{2008}\)
\(\Rightarrow4C=2^2+2^4+...+2^{2010}\)
\(\Rightarrow4C-C=\left(2^2+2^4+...+2^{2010}\right)-\left(1+2^2+2^4+...+2^{2008}\right)\)
\(3C=2^{2010}-1\)
\(C=\frac{2^{2010}-1}{3}\)
\(C=1+2^2+2^4+....+2^{2008}\)
\(\Rightarrow4C=2^2+2^4+.....+2^{2010}\)
\(\Rightarrow3C=4C-C=\left(2^2+2^4+...+2^{2010}\right)-\left(1+2^2+.....+2^{2008}\right)\)
\(\Rightarrow3C=2^{2010}-1\)
\(\Rightarrow C=\frac{2^{2010}-1}{3}\)
C=1+22+24+...+22008
⇒4C=22+24+...+22010
⇒4C−C=(22+24+...+22010)−(1+22+24+...+22008)
3C=22010−1
C=22010−13
\(C=1+2^2+2^4+...+2^{2008}\)
\(\Rightarrow4C=2^2+2^4+...+2^{2010}\)
\(\Rightarrow4C-C=\left(2^2+2^4+...+2^{2010}\right)-\left(1+2^2+2^4+...+2^{2008}\right)\)
\(3C=2^{2010}-1\)
\(C=\frac{2^{2010}-1}{3}\)