Rút gọn :
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}.}\)
Rút gọn D, biết D=\(\frac{1}{\sqrt{2}+2}\)+ \(\frac{1}{3\sqrt{2}+2\sqrt{3}}\)+ \(\frac{1}{4\sqrt{3}+3\sqrt{4}}\)+........................+ \(\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
Rút gọn \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
Giải Giúp mình với
Rút gọn: A=\(\sqrt{1+2015^{2^{ }}+\dfrac{2015^2}{2016^2}}+\dfrac{2015}{2016}\)
RGBT:
E=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
giải phương trình :\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
Tính \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
Tính
\(P=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
1. Rút Gọn:
\(P=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(Q=\frac{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
2. Tính Tổng:
\(S=\frac{\sqrt{1}+\sqrt{2}}{1+2}+\frac{\sqrt{2}+\sqrt{3}}{2+3}+...+\frac{\sqrt{2015}+\sqrt{2016}}{2015+2016}\)