Giải các pt
a) \(\sqrt{2}\sin\left(2x+\dfrac{\pi}{4}\right)=3\sin x+\cos x+2\)
b) \(\dfrac{\left(2-\sqrt{3}\right)\cos x-2\sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2\cos x-1}=1\)
c) \(2\sqrt{2}\cos\left(\dfrac{5\pi}{12}-x\right)\sin x=1\)
giải phương tình sau:
\(\dfrac{1}{\sin x}\)+\(\dfrac{1}{\sin\left(x-\dfrac{3\pi}{2}\right)}\)= 4\(\sin\left(\dfrac{7\pi}{4}-x\right)\)\(cosx.tan\left(\pi+x\right)+cos\left(-x\right)-sin\left(\dfrac{\pi}{2}-x\right)+sin\left(\pi-x\right)\)
1.\(\)chứng minh hệ thức: \(\dfrac{sin\alpha+sin3\alpha+sin5\alpha}{cos\alpha+cos3\alpha+cos5\alpha}=tan3\alpha\)
2.rút gọn biểu thức: \(\dfrac{1+sin4\alpha-cos4\alpha}{1+cos4\alpha+sin4\alpha}\)
3. Tính \(96\sqrt{3}sin\dfrac{\pi}{48}cos\dfrac{\pi}{48}cos\dfrac{\pi}{24}cos\dfrac{\pi}{12}cos\dfrac{\pi}{6}\)
4. chứng minh rằng trong một △ABC ta có:
tanA + tanB + tanC = tanA tanB tanC (A,B,C cùng khác \(\dfrac{\pi}{2}\))
cho sinx=3/5 (pi/2<x<pi). Tính cosx ,cos2x, sin(x-pi/4), tan x/2
Tính giá trị của biểu thức sau : B= \(\dfrac{tan\left(\dfrac{21\pi}{2}-x\right).cos\left(38\pi-x\right).sin\left(x-7\pi\right)}{sin\left(\dfrac{13\pi}{2}-x\right).cos\left(x-2023\pi\right)}\)
Tính giá trị của biểu thức sau: B= \(\dfrac{tan\left(\dfrac{23\pi}{2}+x\right).sin\left(2022\pi-x\right).cos\left(x-2021\pi\right)}{cos\left(\dfrac{2021\pi}{2}-x\right).sin\left(x+2023\pi\right)}\)
Rút gọn biểu thức: \(A=sin\left(a+b\right)+sin\left(\frac{\pi}{2}-a\right)sin\left(-b\right)\)
tính F=\(\sin^2\dfrac{\pi}{6}+\sin^2\dfrac{2\pi}{6}+...+\sin^2\dfrac{5\pi}{6}+\sin^2\pi\)
2/ biết \(\sin\beta=\dfrac{4}{5},0< \beta< \dfrac{\pi}{2}\) giá trị của biểu thúc a=\(\dfrac{\sqrt{3}\sin\left(\alpha+\beta\right)-\dfrac{4\cos\left(\alpha+\beta\right)}{\sqrt{3}}}{\sin\alpha}\)