a)\(\frac{x^2+3x+2}{3x+6}=\frac{x^2+2x+x+2}{3\cdot\left(x+2\right)}=\frac{\left(x^2+2x\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}=\frac{x\cdot\left(x+2\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}\)
\(=\frac{\left(x+2\right)\cdot\left(x+1\right)}{3\cdot\left(x+2\right)}=\frac{x+1}{3}\)
b) \(\frac{2x^2+x-1}{6x-3}=\frac{2x^2+2x-x-1}{3\cdot\left(2x-1\right)}=\frac{\left(2x^2+2x\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}\)
\(=\frac{2x\cdot\left(x+1\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{\left(2x-1\right)\cdot\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{x+1}{3}\)
a) Ta có: \(\frac{x^2+3x+2}{3x+6}\) \(\left(x\ne-2\right)\)
\(=\frac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}\)
\(=\frac{x+1}{3}\)
b) Ta có: \(\frac{2x^2+x-1}{6x-3}\) \(\left(x\ne\frac{1}{2}\right)\)
\(=\frac{\left(2x-1\right)\left(x+1\right)}{3\left(2x-1\right)}\)
\(=\frac{x+1}{3}\)
a. \(\frac{x^2+3x+2}{3x+6}=\frac{1}{3}.\frac{3x^2+9x+6}{3x+6}\)
\(=\frac{1}{3}.\frac{x\left(3x+6\right)+3x+6}{3x+6}=\frac{1}{3}x+1\)
b. \(\frac{2x^2+x-1}{6x-3}=\frac{1}{3}.\frac{6x^2+3x-3}{6x-3}\)
\(=\frac{1}{3}.\frac{x\left(6x-3\right)+6x-3}{6x-3}=\frac{1}{3}x+1\)