Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Nguyễn Cao

Rút gọn P = \(\frac{a^3+b^3+c^3}{\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2}\)

Mất nick đau lòng con qu...
5 tháng 7 2019 lúc 18:46

\(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=a^3+b^3+c^3+3\left(abc+c^2a+b^2c+bc^2+a^2b+ca^2+ab^2+abc\right)\)

\(=a^3+b^3+c^3+3\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Rightarrow\)\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)

Lại có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a-b+b-c+c-a\right)^2\)

\(-2\left[\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)\right]\)

\(=-2\left(ab-ca-b^2+bc+bc-ab-c^2+ca+ca-bc-a^2+ab\right)\)

\(=2\left(a^2+b^2+c^2-ab-bc-ca\right)=2\left(a+b+c\right)^2-6\left(ab+bc+ca\right)\)

\(\Rightarrow\)\(P=\frac{\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)}{2\left(a+b+c\right)^2-6\left(ab+bc+ca\right)}\)

\(=\frac{\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]}{2\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]}=\frac{a+b+c}{2}\)


Các câu hỏi tương tự
Sao Băng
Xem chi tiết
nguyễn ngọc phương linh
Xem chi tiết
Linh Tu
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Võ Khánh Phương
Xem chi tiết
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
Võ Thiên Long
Xem chi tiết