\(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+bc+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=a^3+b^3+c^3+3\left(abc+c^2a+b^2c+bc^2+a^2b+ca^2+ab^2+abc\right)\)
\(=a^3+b^3+c^3+3\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)
\(=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Rightarrow\)\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)
Lại có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a-b+b-c+c-a\right)^2\)
\(-2\left[\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)\right]\)
\(=-2\left(ab-ca-b^2+bc+bc-ab-c^2+ca+ca-bc-a^2+ab\right)\)
\(=2\left(a^2+b^2+c^2-ab-bc-ca\right)=2\left(a+b+c\right)^2-6\left(ab+bc+ca\right)\)
\(\Rightarrow\)\(P=\frac{\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)}{2\left(a+b+c\right)^2-6\left(ab+bc+ca\right)}\)
\(=\frac{\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]}{2\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]}=\frac{a+b+c}{2}\)