Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Anh Dũng An

Rút gọn \(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) biết x+y+z=0

kudo shinichi
2 tháng 11 2018 lúc 21:14

Ta có: \(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(x^2+y^2+z^2+2xy+2yz+2xz=0\)

\(\Rightarrow x^2+y^2+z^2=-2.\left(xy+yz+zx\right)\)

\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

\(=\frac{-2.\left(xy+yz+zx\right)}{y^2+z^2+z^2+x^2+x^2+y^2-2.\left(xy+yz+zx\right)}\)

\(=\frac{-2.\left(xy+yz+zx\right)}{2.\left(x^2+y^2+z^2\right)-2.\left(xy+yz+zx\right)}\)

\(=\frac{-2.\left(xy+yz+zx\right)}{2.\left[-2.\left(xy+yz+zx\right)\right]-2.\left(xy+yz+zx\right)}\)

\(=\frac{-2.\left(xy+yz+zx\right)}{-6.\left(xy+yz+zx\right)}\)

\(=\frac{1}{3}\left(xy+yz+zx\ne0\right)\)

Tham khảo nhé~


Các câu hỏi tương tự
Nguyen Dinh Dung
Xem chi tiết
hotboy
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Quỳnh Mai
Xem chi tiết
Lê Thị Minh Thư
Xem chi tiết
Nguyễn Mạnh Tân
Xem chi tiết
Nguyen Dinh Dung
Xem chi tiết
Lê Quý Trung
Xem chi tiết
Hàn Băng
Xem chi tiết