I .cho C= \(\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\)
a, rút gọn C
b, tính C vs x=\(\frac{4}{9}\)
c, tìm x để GTTĐ của C =\(\frac{1}{3}\)
II. cho P = \(\hept{\frac{\sqrt{x}-2}{x-1}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1})X\frac{\left(1-x\right)^2}{2}\)
a, rút gọn P
b, chứng minh rằng nếu 0<x<1 thì P>0
III. Cho Q= \(\frac{2\sqrt{x-9}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, rút gọn Q
b, tìm các gtri x nguyên để Q có gtri nguyên
bài 1: rút gọn:
C=\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
bài 2 :rút gọn
E=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
rút gọn:
a)\(\left(\frac{1}{2+2\sqrt{x}}+\frac{1}{2-2\sqrt{x}}-\frac{x^2+1}{1-x^2}\right)\times\left(1+\frac{1}{x}\right)\)
b)\(\left(\frac{2\sqrt{xy}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+\sqrt{y}}\right)\times\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
c)\(\left(\frac{x-1}{\sqrt{x}-1}+\frac{x\sqrt{x}-1}{1-x}\right)\div\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}+1}\)
Rút gọn biểu thức A=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
rút\:gọn\:\frac{2\sqrt{x}}{\sqrt{x}-2}-\frac{5\sqrt{x}-2}{x-2\sqrt{x}}-\frac{\sqrt{x}+1}{\sqrt{x}}
rút gọn: \(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\times\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(\left(\frac{x+2}{x\sqrt{x-1}}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\) rút gọn biểu thức
A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right)/\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\sqrt{x}-1}\right)\)
B=\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\times\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{1}{\sqrt{x}+1}+\frac{x}{\sqrt{x}-x}\)
Rút gọn giúp mk và tìm điều kiện xác định nha.
A=\(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
rút gọn a