1) Rút gọn bt:
(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Tìm x,y,z t/m: 9x2+y2+2z2-18x+4z-6y+20=0
3)Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\)=1 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\)=0 . CMR:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)=1
Rút gọn BT:
\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(b,\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+x\right)\left(y-z\right)\)
rút gọn
a) ( x-1) 2 + z ( x-z ) (x+z) ( x-z ) 2
b) ( x-y ) 2 + ( x-y ) (x+y) + ( x+y ) 2
1) Rút gọn bt:
(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Tìm x,y,z t/m: 9x2+y2+2z2-18x+4z-6y+20=0
Rút gọn: x^2 + y^2 + z^2 / (y-z)^2 + (z-x)^2 + (x-y)^2, biết rằng x+y+z= 0
Rút gọn: x^2 + y^2 + z^2 / (y-z)^2 + (z-x)^2 + (x-y)^2, biết rằng x+y+z= 0
Rút gọn :(x+y+z)^2 - 2(x+y+z)(x+y)+(x+y)^2
cho x+y+z=0 và x,y,z khác 0 rút gọn q= [(x^2+y^2-z^2)(y^2+z^2-x^2)(z^2+x^2+y^2)]:16xyz
Rút gọn C= [ (x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3] / [ (x-y)^3 + (y-z)^3 + (z-x)^3 ]