Áp dụng hằng đẳng thức (a+b)3 = a3 + 3a2b + 3ab2 + b3 = a3 + b3 + 3ab.(a +b) ta có:
\(B^3=20+14\sqrt{2}+20-14\sqrt{2}+3\sqrt[3]{20+14\sqrt{2}}.\sqrt[3]{20-14\sqrt{2}}\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)\)
\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}.B\)
\(B^3=40+3.\sqrt[3]{400-392}.B=40+3.\sqrt[3]{8}.B=40+6B\)
=> B3 - 6B - 40 = 0
<=> B3 - 64 - 6B + 24 = 0
<=> (B - 4 ).(B2 + 4B + 16) - 6.(B - 4) = 0
<=> (B - 4).(B2 + 4B + 16 - 6) = 0 <=> B = 4 hoặc B2 + 4B + 10 = 0
B2 + 4B + 10 = 0 Vô nghiêm vì \(\Delta\) = 16 - 40 = -24 < 0
Vậy B = 4
Đúng 0
Bình luận (0)