Ta có A2 = 8 + \(2\sqrt{6-2\sqrt{5}}\)= 8 + 2(\(\sqrt{5}\)- 1)
= 6 + \(2\sqrt{5}\)= (\(\sqrt{5}+1\))2
Vậy A = \(\sqrt{5}+1\)
Ta có A2 = 8 + \(2\sqrt{6-2\sqrt{5}}\)= 8 + 2(\(\sqrt{5}\)- 1)
= 6 + \(2\sqrt{5}\)= (\(\sqrt{5}+1\))2
Vậy A = \(\sqrt{5}+1\)
Rút gọn biểu thức: \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Rút gọn biểu thức:
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
rút gọn biểu thức
\(\sqrt{4-\sqrt{10+2\sqrt{5}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}\)
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Rút gọn biểu thức
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\) rút gọn
rút gọn biểu thức
A=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
rút gọn biểu thức :
A= \(\dfrac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\).
B= \(\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\).
C= \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\).
rút gọn biểu thức: a)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
b)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c)\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
Rút gọn biểu thức:
a,\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
\(b,\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)