a) \(\sqrt{3+\sqrt{\frac{13+1}{2}}}\)
\(=\sqrt{3+\sqrt{\frac{14}{2}}}\)
\(=\sqrt{3+\frac{\sqrt{14}}{\sqrt{2}}}\)
\(=\sqrt{3+\sqrt{7}}\)
a) \(\sqrt{3+\sqrt{\frac{13+1}{2}}}\)
\(=\sqrt{3+\sqrt{\frac{14}{2}}}\)
\(=\sqrt{3+\frac{\sqrt{14}}{\sqrt{2}}}\)
\(=\sqrt{3+\sqrt{7}}\)
rút gọn
a, \(\left(\sqrt{\frac{5}{3}-\sqrt{\frac{3}{5}}}\right)\sqrt{15}\)
b, \(\frac{2\sqrt{2}-1}{\sqrt{2}-1}+\frac{3\sqrt{2}-2}{\sqrt{2}-3}\)
c, \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
Bài 1 Rút gọn các biểu thức
a, \(-\sqrt{36b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{150b}\) với b>0
b,\(\frac{3+\sqrt{4}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
c,\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
d, A=\(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-6\sqrt{20}}}}\)
e, B=\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
Rút gọn biểu thức
a)\(\frac{a-1}{\sqrt[3]{a^2}+\sqrt[3]{a}+1}\)\
b)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\left(5\sqrt[3]{4}-3\sqrt[3]{\frac{1}{2}}\right)\)
Rút gọn biểu thức: \(\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)
bài 1: cho biểu thức: P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a để P nguyên
bài 2: cho biểu thức: P=\(\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a (a>8) để P nguyên
Cho biểu thức
A= \(\text{[}1-\frac{\sqrt{x}}{1+\sqrt{x}}\text{]}:\text{[}\frac{\sqrt{x}+3}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\)
a, Rút gọn A
b, Tìm x để A<0
Rút gọn các biểu thức
a, \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
b, \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
c, \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
d, \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
Cho biểu thức
A=\(\text{[}1-\frac{\sqrt{x}}{1+\sqrt{x}}\text{]}:\text{[}\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\)
a, Rút gọn A
b, Tìm x để A= \(\frac{1}{2}\)
cho 2 biểu thức
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
a)Rút gọn biểu thức A
b)Tìm giá trị của x để biểu thức S=A.B có giá trị lớn nhất