3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
= (24 - 1)(24 + 1)(28 + 1)(216 + 1)
= (28 - 1)(28 + 1)(216 + 1)
= (216 - 1)(216 + 1)
= 232 - 1
3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
= (24 - 1)(24 + 1)(28 + 1)(216 + 1)
= (28 - 1)(28 + 1)(216 + 1)
= (216 - 1)(216 + 1)
= 232 - 1
Thu gọn biểu thức sau :
a) \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{4}+1\right)\cdot\left(\frac{1}{16}+1\right)\cdot\cdot\cdot\left(1+\frac{1}{2^{2n}}\right)\)
b) \(\left(2+1\right)\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\cdot\left(2^{32}+1\right)-2^{64}\)
rút gọn biểu thức sau bằng cách nhanh nhất
A = \(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
B = \(\left(3x^3+3x+1\right)\cdot\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
C = \(\left(2-6x\right)^2+\left(2-5x\right)^2+2\cdot\left(6x-2\right)\cdot\left(2-5x\right)\)
D = \(5\cdot\left(3x-1\right)^2+4\cdot\left(5x+1\right)^2-12\cdot\left(5x-2\right)\left(5x+2\right)\)
E = \(\left(3x-1\right)^2+\left(2x+4\right)\cdot\left(1-3x\right)+\left(x+2\right)^2\)
G = \(\left(x-1\right)^3+4\cdot\left(x+1\right)\cdot\left(1-x\right)+3\cdot\left(x-1\right)\cdot\left(x^2+x+1\right)\)
rút gọn biểu thức:
\(3x^2\cdot\left(2y-1\right)-2x^2\cdot\left(5y-3\right)-2x\cdot\left(x-1\right)\)
Rút gọn biểu thức sau:
A=\(\left(2x+y\right)^2-\left(y-2x\right)^2\)
B=\(\left(3x+2\right)^2+2\cdot\left(2+3x\right)\cdot\left(1-2y\right)+\left(2y-1\right)^2\)
Phân tích đa thức thành nhân tử
a)\(x\cdot\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)+1\)
b)\(\left(x^2-x+2\right)^2+4\cdot x^2-4\cdot x-4\)
c)\(\left(x+2\right)\cdot\left(x+4\right)\cdot\left(x+6\right)\cdot\left(x+8\right)+16\)
Rút gọn: \(\frac{x^2}{\left(x+y\right)\cdot\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\cdot\left(1+x\right)}-\frac{x^2\cdot y^2}{\left(x+1\right)\cdot\left(1-y\right)}\)
Rút Gọn:
\(a:\left(x+1\right)-\left(x-1\right)-3\cdot\left(x+1\right)\cdot\left(x-1\right)\)
\(b:5\cdot\left(x+2\right)\cdot\left(x-2\right)-\frac{1}{2}\cdot\left(6-8x\right)^2+17\)
rút gọn phân thức\(\frac{a^2\cdot\left(b-c\right)+b^2\cdot\left(c-a\right)+c^2\cdot\left(a-b\right)}{a^4\cdot\left(b^2-c^2\right)+b^4\cdot\left(c^2-a^2\right)+c^4\cdot\left(a^2-b^2\right)}\)
rút gọn biểu thức sau
\(\left(x+8\right)^2-2\cdot\left(x+8\right)\cdot x-1+7\)