\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}y-x^{n-1}y-y^n=x^n-y^n\)
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}y-x^{n-1}y-y^n=x^n-y^n\)
Rút gọn biểu thức:
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
Rút gọn biểu thức:
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
rút gọn biểu thức
a)\(x\left(x-y\right)+y\left(x-y\right)\)
b)\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
Rút gọn biểu thức sau
\(D=n^2\left(n+4\right)\left(n-4\right)+\left(1-n^2\right)\left(n^2+1\right)\)
\(E=\left(\frac{1}{2}x^m-y^n\right)×\left(y^n+\frac{1}{2}x^m\right)\)
Giúp mình với !!!
Rút gọn bthức: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
1) Tìm số tự nhiên n để đơn thức A chia hết cho đơn thức B
\(A=\)\(4x^{n+1}y^2;B=3x^3y^{n-1}\)
2) Rút gọn biểu thức
\(\left[\left(x^3+y^3\right)-2\left(x^2-y^2\right)+3\left(x+y\right)^2\right]:\left(x+y\right)\)
Rút gọn biểu thức \(M=\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2-y^2}{\left(1+x\right)\left(1-y\right)}\)
Rút gọn biểu thức sau : \(x^{n-3}y^3\left(x^{n+3}-x^3y^{n-3}\right)+x^3y^{n-3}\left(x^{n-3}y^3-y^{n+3}\right)\)
Rút gọn các biểu thức sau:
a/ \(\left(x-2y^{ }\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
b/ \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)