\(\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-1\left(vi\sqrt{5}>1\right)\)
\(\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-1\left(vi\sqrt{5}>1\right)\)
Rut Gon bieu thuc
\(\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}\)
Cho bieu thuc:
P=\(\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
a. Rut gon bieu thuc P
b.Tim GTLN cua P sau khi rut gon
rut gon \(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
Rut gon bieu thuc
\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
RUT GON
rut gon bieu thuc
\(\left(3\sqrt{2}+\sqrt{6}\right)\times\sqrt{6-3\sqrt{3}}\)
Rut gon: \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)\(\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) rut gon bieu thuc gium em a thanks
rut gon
C = \(\sqrt{15-6\sqrt{6}+\sqrt{33-12\sqrt{6}}}\)