Rút gọn biểu thức
\(\frac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
rút gọn biểu thức sau:
H= \(\left(\frac{\sqrt{x}+4}{x-2\sqrt{x}}+\frac{3}{\sqrt{x}-2}\right)\div\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}+2}\right)\)
Rút gọn biểu thức sau:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{24}-\sqrt{25}}\)
rút gọn biểu thức\(\frac{\sqrt{2-\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
Cho biểu thức E = \(\left(\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{2\sqrt{x}}{\sqrt{x}-1}\right)\div\frac{-x+14\sqrt{x}+3}{x\sqrt{x}-4x+3\sqrt{x}}\)
a. Tìm điều kiện để biểu thức được xác định
b. Rút gọn biểu thức
Rút gọn biểu thức
A=\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Rút gọn các biểu thức sau
a) \(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
b) \(\frac{1}{2\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
\(\frac{\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Hãy rút gọn biểu thức trên
Rút gọn biểu thức sau :
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)