\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
Dat B=1/2+1/2^2+1/2^3+.............+1/2^2012=>2B=1+1/2+1/2^2+.......+1/2^2011
=>2B-B=1/2^2011-1/2^2012=2^2012-2^2011/2^4023
=>A=1+2^2012-2^2011/2^4023
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2012}}\right)\)
\(\Rightarrow A=2-\frac{1}{2^{2012}}\)
\(\Rightarrow A=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)
Vậy \(A=\frac{2^{2013}-1}{2^{2012}}\)