\(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)
\(=\sqrt{\frac{x-2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\frac{2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)
\(\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}\)
\(=\sqrt{\frac{x-2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\frac{2\sqrt{2x-4}}{2}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)
\(=\sqrt{\frac{x}{2}-\sqrt{2x-4}}\)
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
rút gọn biểu thức
\(\frac{\sqrt{2x+2\sqrt{x^2+4}}}{\sqrt{x^2-4}+x+2}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Rút gọn biểu thức sau với x \(\ge\) 0
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
Cho biểu thức sau: \(P=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
Tìm điều kiện để P có nghĩa và rút gọn P
1. Cho biểu thức:
B= ( \(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\)) :\(\frac{1}{\sqrt{x}-1}\)
a) Rút gọn B
b) Tìm Min B
2. Rút gọn biểu thức:
\(\sqrt{\frac{1}{1-2x+x^2}}.\sqrt{\frac{4-4x+4x^2}{81}}\)
3. giải phương trình: 3+\(\sqrt{2x-3}\)= x
\(A=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
rút gọn biểu thức
Rút gọn biểu thức sau: \(P=\frac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}-\sqrt{x-\sqrt{2x-1}}}}\) (\(\left(x\ge2\right)\)
rút gọn biểu thức \(\frac{\sqrt{4x+4+\frac{1}{x}}}{\sqrt{x}|2x^2-x+1|}\)