Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thương

Rút gọn biểu thức sau :

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)

Hoàng Lê Bảo Ngọc
16 tháng 7 2016 lúc 10:30

Ta xét biểu thức sau : 

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left[\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right]}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)(với n > 0)

Áp dụng : \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+...+\left(\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right)\)

\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

phuong khoi my
16 tháng 7 2016 lúc 12:27

why the heck difficult


Các câu hỏi tương tự
Phạm Minh Tuấn
Xem chi tiết
Nguyễn Phi Hòa
Xem chi tiết
o0o I am a studious pers...
Xem chi tiết
NguyenHa ThaoLinh
Xem chi tiết
Pham Hoàng Lâm
Xem chi tiết
bùi thị ánh kiều
Xem chi tiết
nguyễn văn kiệt
Xem chi tiết
Trịnh Hồng Quân
Xem chi tiết
Hàn Băng
Xem chi tiết