Rút gọn biểu thức sau \(\frac{1}{3xy}\sqrt{27x^2y^4}\)=\(\frac{|3xy^2|}{3xy}\sqrt{3}\)thế này thì sao nữa mấy bạn( x,y khác 0)
\(\hept{\begin{cases}x^4+6x^2y+3xy^2+2xy+y^4+4y^2=x^3+6x^2y^2+4x^2+x+2y^2+4y\\4x^3y+6xy^2+4x+y^3+y^2+13=2x^3+3x^2y+x^2+4xy^3+8xy+y\end{cases}}\)
Giúp với ạ:
Rút gọn biểu thức:
\(50x^3y^5\)\(-\frac{2y^2}{x^2}\)\(\sqrt{32x^7y}\)\(+\frac{3xy}{2}\)\(\sqrt{2xy^3}\)(x>0 , y>0)
1)Tìm x,y thỏa mãn:
x2-3xy+2y2 = 0 và 2x2 - 3xy + 5 = 0
2) Tìm x,y thỏa mãn:
(x-y)2 + 3(x-y) = 4 và 2x + 3y = 12
Rút gọn: M = \(\frac{5x^5+4x^4+3x^3+2}{4x^4+3x^3+2x^2+z}+\frac{4y^4+3y^3+2y^2+y}{5y^5+4y^4+3y^3+2}+\frac{5y^5+4z^4+3z^3+2}{4z^4+3z^3+2z^2+z}\)
\(\left\{{}\begin{matrix}4x^2+3xy-2y^2=2x+4y\\\dfrac{x^2\left(2x-y\right)}{x+2y}=\dfrac{1}{2}\end{matrix}\right.\)
1) 8y^2-25=3xy+5x
2)xy-2y-3=3x-x^2
3)x^2+2y^2-3xy_4x-3y-26=0
4)x^2+3y^2+2xy-2x-4y-3=0
5)x^3+3x=y^3
6)x^4-2x^2y+7y^2=55
7)x^2y^2-2xy=x^2+16y^2
Giải hệ phương trình \(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{cases}}\)
1) 6x2-6y2-5xy+8x+y+13=0
2) 9x2-6y2+3xy-9x+y-5=0
3)6x2-2y2-4xy-31x-5y+13=0
4) 2x2-2y2+3xy-12x+11y-17=0