a.
$\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{2^2-2.2\sqrt{5}+5}-\sqrt{5}$
$=\sqrt{(2-\sqrt{5})^2}-\sqrt{5}=|2-\sqrt{5}|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2$
b.
$\sqrt{4+2\sqrt{3}}-\sqrt{3}=\sqrt{3+2\sqrt{3}+1}-\sqrt{3}=\sqrt{(\sqrt{3}+1)^2}-\sqrt{3}$
$=|\sqrt{3}+1|-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1$
c.
$=\sqrt{3-2\sqrt{3}+1}-\sqrt{3}=\sqrt{(\sqrt{3}-1)^2}-\sqrt{3}=|\sqrt{3}-1|-\sqrt{3}$
$=\sqrt{3}-1-\sqrt{3}=-1$
d.
$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=(\sqrt{3}+1)-(\sqrt{3}-1)$
$=2$