1) Rút gọn biểu thức M:
\(\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{2}{11}}\)
2) Tính nhanh:
\(A=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times....\times\left(1-\frac{1}{100}\right)\)
Rút gọn biểu thức A = \(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{899}{900}\) ta được A =?
Tính giá trị của biểu thức
A =\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times....\times\left(\frac{1}{99}+1\right)\)
Chứng tỏ
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}>32\%\)
Tinh\(\left(1-\frac{1}{1+2}\right)\times\left(1-\frac{1}{1+2+3}\right)\times\left(1-\frac{1}{1+2+3+4}\right)\times...\times\left(1-\frac{1}{1+2+3+...+2015}\right)\)
BÀI 1:TÍNH
A=\(\frac{7^2}{7\times8}\times\frac{8^2}{8\times9}\times...\times\frac{11^2}{11\times12}\)
B=\(\left(1+\frac{1}{11}\right)\times\left(1+\frac{1}{12}\right)\times...1+\frac{1}{15}\)
C=\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2010}\right)\)
D=\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2010}-1\right)\)
BÀI 2:Tìm p/số tối giản \(\frac{a}{b}\)nhỏ nhất (a,b\(\in N\cdot\)để khi nhân \(\frac{a}{b}với\frac{55}{16};\frac{25}{24}\)thì ta được tích là các số tự nhiên
tính giá trị biểu thức
a, A=\(\frac{-1}{2}-\left[\frac{-3}{5}\right]+\left[\frac{-1}{9}\right]+\frac{1}{27}+\frac{7}{18}+\frac{4}{35}-\left[-\frac{2}{7}\right]\)
b, B=\(\frac{1}{3}-\frac{3}{4}-\left[\frac{-3}{5}-\frac{1}{57}+\frac{1}{36}+\frac{-1}{15}\right]-\frac{2}{9}\)
c, C=\(\left[-\frac{7}{15}\right]\times\frac{5}{8}\times\left[\frac{30}{-7}\right]\times\left[-16\right]\times\left[\frac{-1}{1000}\right]\)
d, D=\(\frac{1}{2}\times\frac{-11}{19}-50\%\times\left[-\frac{1}{19}\right]+\frac{10}{19}\times\frac{1111}{2222}\)
Tìm tích:
1.\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times...\times\left(\frac{1}{999}+1\right)\)
2.\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1000}-1\right)\)
3.\(\frac{3}{2^2}\times\frac{8}{3^2}\times\frac{15}{4^2}\times...\times\frac{99}{10^2}\)
Tinh \(\left(1-\frac{2}{2\times3}\right)\times\left(1-\frac{2}{3\times4}\right)\times\left(1-\frac{2}{4\times5}\right)\times...\times\left(1-\frac{2}{2015\times2016}\right)\)
BÀI 1:TÍNH
A=\(\frac{7^2}{7\times8}\times\frac{8^2}{8\times9}\times...\times\frac{11^2}{11\times12}\)
B=\(\left(1+\frac{1}{11}\right)\times\left(1+\frac{1}{12}\right)\times...\times\left(1+\frac{1}{15}\right)\)
C=\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2010}\right)\)
D=\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2010}-1\right)\)
BÀI 2: Tìm phân số tối giản \(\frac{a}{b}\)nhỏ nhất (a,b thuộc N sao)để khi nhân \(\frac{a}{b}với\frac{55}{16}:\frac{25}{24}\)được tích là các số tự nhiên.