Bài làm:
Ta có: \(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2\)
\(=\left(2x\right)^2\)
\(=4x^2\)
\(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
2( x - y )( x + y ) + ( x - y )2 + ( x + y )2
= 2( x2 - y2 ) + x2 - 2xy + y2 + x2 + 2xy + y2
= 2x2 - 2y2 + 2x2 + 2y2
= 4x2
\(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2\)
\(=2x^2+2xy-2yx-2y^2+x^2-2xy+y^2+x^2+2xy+y^2\)
\(=4x^2\)