cho đề sai( chắc thế vì minihf mới lớp 5 :)
Bai nay de lam , em k biet viet can thuc tren may nhung em biet cach lam , chi ap dung cong thuc cana.canb.canc=canabc la rut gon dc
cho đề sai( chắc thế vì minihf mới lớp 5 :)
Bai nay de lam , em k biet viet can thuc tren may nhung em biet cach lam , chi ap dung cong thuc cana.canb.canc=canabc la rut gon dc
Rút gọn các biểu thức sau:
A= \(3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
B= \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)
C= \(3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
D= \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
E= \(\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)
rút gọn biểu thức chưa căn thức bậc hai:
1,\(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)
2, \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
3,\(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
4,\(\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
5,\(\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{\left(3+\sqrt{2}\right)^2}\)-\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
b) \(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}\)-\(\sqrt{\left(\sqrt{7}+2\sqrt{2}\right)^2}\)
c)\(\sqrt{\left(3+\sqrt{5}\right)^2}\)+\(\sqrt{\left(3-\sqrt{5}\right)^2}\)
d) \(\sqrt{\left(2-\sqrt{3}\right)^2}\)-\(\sqrt{\left(2+\sqrt{3}\right)^2}\)
thực hiện phép tính ( rút gọn biểu thức )
a) \(\left(\dfrac{3+2\sqrt{3}}{\sqrt{3}+2}-\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
b) \(\left(2+\dfrac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(2+\dfrac{\sqrt{11}+11}{\sqrt{11}+1}\right)\)
A= \(\dfrac{3}{\sqrt{7}-2}\) + \(\sqrt{\left(\sqrt{7}-3\right)}^2\)
B= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right)\):\(\left(\dfrac{\sqrt{x}+1}{x-1}\right)\)
Rút gọn A,B
Cho A=\(\dfrac{\sqrt{1-\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right]}{2-\sqrt{1-x^2}}\)
a)Rút gọn A
b)tìm x biết A≥ \(\dfrac{1}{2}\)
Rút gọn: \(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6+1}\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
Bài 1:Rút gọn
\(a,\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(b,\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(c,\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)\times\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\left(a\ne1;a\ge0\right)\)
Bài 2: Rút gọn biểu thức
\(P=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
rút gọn
g, \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right).\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\) h,\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right).\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\dfrac{1}{5}}\right)\)
rút gọn A=\(\frac{\sqrt{1+\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]}{2+\sqrt{1-x^2}}\)