bài 1: rút gọn:
C=\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
bài 2 :rút gọn
E=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(C=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)
a) Rút gọn C
b) CMR C > 1
Rút gọn biểu thức:
A= \(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)
Bài 1: Rút gọn biểu thức:
\(A=\left(\frac{2\sqrt{xy}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+2\sqrt{y}}\right).\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\) Với x>0, y>0, x#y
Rút gọn biểu thức
\(\left(\frac{2x\sqrt{y}+2y\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{x\sqrt{x}+y\sqrt{x}}{\sqrt{x}}\right).\left(\frac{\sqrt{x}-\sqrt{y}}{x-y}\right)^2\)
Cho biểu thức A=\(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{x\sqrt{x}+y\sqrt{y}}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right)\)
a Rút gọn biểu thức A
b so sánh A và \(\sqrt{A}\)
Cho A=\(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{x\sqrt{x}+y\sqrt{y}}\times\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right)\)
a)Rút gọn A
b)So sánh A và \(\sqrt{A}\)
RÚt gọn A=\(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\frac{x-y}{\sqrt{x}-\sqrt{y}}\) X>0; y>0
rút gọn biểu thức \(A=\left(5-\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\right)\)\(\left(5+\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\right)\)