Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
shunnokeshi

rút gọn A=\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}\)+\(\frac{y^2-xz}{\left(y+z\right)\left(y+x\right)}\)+\(\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)

Trí Tiên亗
13 tháng 2 2020 lúc 16:27

\(A=\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)

\(=\frac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(z+x\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{x^2y+x^2z-y^2z-yz^2+y^2z+y^2x-xz^2-x^2z+z^2x+z^2y-x^2y-xy^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)

Vậy : \(A=0\)

Khách vãng lai đã xóa
Lê Nguyễn Gia Hân
13 tháng 2 2020 lúc 16:33

\(\frac{(x^2-yz)(y+z)}{(x+y)(x+z)(y+z)}\) = ​​\(\frac{(y^2-xz)(x+z)}{(x+y)(x+z)(y+z)}\)​= \(\frac{(z^2-xy)(x+y)}{(x+y)(x+z)(y+z)}\)

Khách vãng lai đã xóa
Nguyễn Phạm Hồng Anh
13 tháng 2 2020 lúc 16:51

\(A=\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)

\(=\frac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(x+z\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(=\frac{x^2y+x^2z-y^2z-yz^2+xy^2+y^2z-x^2z-xz^2+xz^2+yz^2-x^2y-xy^2}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(=\frac{0}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(=0\)

Study well ! 

 

Khách vãng lai đã xóa

Các câu hỏi tương tự
Xem chi tiết
I lay my love on you
Xem chi tiết
Nguyễn Minh Hiển
Xem chi tiết
ta thi hong hai Tathpthu...
Xem chi tiết
Trần Thị Mỹ Duyên
Xem chi tiết
Nguyễn Phú Trọng
Xem chi tiết
ninja siêu đẳng
Xem chi tiết
lê thị thu huyền
Xem chi tiết
Sakura Riki Hime
Xem chi tiết