\(A=4\sqrt{32}+2\sqrt{50}-8\sqrt{2}-2\sqrt{98}\)
\(=4\sqrt{16.2}+2\sqrt{25.2}-8\sqrt{2}-2\sqrt{49.2}\)
\(=16\sqrt{2}+10\sqrt{2}-8\sqrt{2}-14\sqrt{2}=4\sqrt{2}\)
\(B=\frac{1}{\sqrt{6}+\sqrt{10}}-\frac{1}{\sqrt{6}-\sqrt{10}}\)
\(=\frac{\sqrt{10}-\sqrt{6}}{\left(\sqrt{6}+\sqrt{10}\right)\left(\sqrt{10}-\sqrt{6}\right)}+\frac{\sqrt{6}+\sqrt{10}}{\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{6}+\sqrt{10}\right)}\)
\(=\frac{\sqrt{10}-\sqrt{6}}{4}+\frac{\sqrt{10}+\sqrt{6}}{4}\)
\(=\frac{2\sqrt{10}}{4}=\frac{\sqrt{10}}{2}=\sqrt{2,5}\)
\(A=4\sqrt{32}+2\sqrt{50}-8\sqrt{2}-2\sqrt{98}\)
\(=16\sqrt{2}+10\sqrt{2}-8\sqrt{2}-14\sqrt{2}\)
\(=\sqrt{2}\left(16+10-8-14\right)\)
\(=4\sqrt{2}\)
\(B=\frac{1}{\sqrt{6}+\sqrt{10}}-\frac{1}{\sqrt{6}-\sqrt{10}}\)
\(=\frac{\sqrt{6}-\sqrt{10}}{\left(\sqrt{6}-\sqrt{10}\right)\left(\sqrt{6}+\sqrt{10}\right)}-\frac{\sqrt{6}+\sqrt{10}}{\left(\sqrt{6}-\sqrt{10}\right)\left(\sqrt{6}+\sqrt{10}\right)}\)
\(=\frac{\sqrt{6}-\sqrt{10}-\sqrt{6}-\sqrt{10}}{6-10}\)
\(=\frac{-2\sqrt{10}}{-4}\)
\(=\frac{\sqrt{10}}{2}\)