A=3^100-3^99+3^98-3^97+.................+3^2-3+1
3A = 3^101-3^100+3^99-3^98+3^97-3^96+...........................-3^2+3
3A + A = 3101+1
4A = 3101 + 1
A = \(\frac{3^{101}+1}{4}\)
A=3^100-3^99+3^98-3^97+.................+3^2-3+1
3A = 3^101-3^100+3^99-3^98+3^97-3^96+...........................-3^2+3
3A + A = 3101+1
4A = 3101 + 1
A = \(\frac{3^{101}+1}{4}\)
Rút gọn S=101+100+99+98+...+3+2+1 :101-100+99-98+...+3-2+1
Rút gọn A= 3^100 - 3^99 + 3^98 - 3^97 + ... + 3^2 - 3 + 1
rút gọn :\(\frac{101+100+99+98+.,.+3+2+1}{101-100+99-98+...+3-2+1}\)
Rút gọn:
\(A=3^{100}-3^{99}+3^{98}-3^{97}+.....+3^2-3+1\)
Rút gọn (1/99+2/98+3/97+...+99/1):(1/2+1/3+1/4+...+1/100)
Rút gọn
A=1*4/2*3+2*5/3*4+3*6/4*5+.........+98*101/99*100
Rút gọn biểu thức:3100-399-398-...-3+1
Rút gọn:
A = \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
B = \(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
1: rút gọn
a) B = 4100 + 499 + ... + 4 + 1
c) C = 3100 - 399 + 398 - ... - 3 + 1