\(\dfrac{6}{84}+\dfrac{6}{210}+\dfrac{6}{390}+...+\dfrac{6}{2100}\)
\(=\dfrac{2}{28}+\dfrac{2}{70}+\dfrac{2}{130}+...+\dfrac{2}{700}\)
\(=\dfrac{2}{4.7}+\dfrac{2}{7.10}+\dfrac{2}{10.13}+...+\dfrac{2}{25.28}\)
\(=\dfrac{2}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)
\(=\dfrac{2}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{2}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(=\dfrac{1}{7}\)
"Trần Khương Duy" tao ko biết mới hỏi chứ biết hỏi làm mẹ gì