\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n-1}{n!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{n-1}{n!}\)
\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{n}{n!}-\dfrac{1}{n!}\)
\(=1-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{\left(n-1\right)!}-\dfrac{1}{n!}\)
\(=1-\dfrac{1}{n!}\)