PTĐTTNT bằng phương pháp đồng nhất hệ số:
x4 - 3x3 + 6x2 - 5x +3
PTĐTTNT:
a) x^3+4x^2-29x+24
b) x^6+3x^5+4x^4+4x^3+4x^2+3x+1
c)x^12+1
ptđttnt : a, 9x^2y^3- 3x^4y^2- 6x^3y^2 + 18xy^4
b,7x^2y^2 - 21xy62z + 7xyz - 14xy
c,a^3x^2y - 5/2a63x^4 + 3/2a^4x^2y
1)x3+8x2+17x+10
2) 2x3-3x2+3x-1
3) x4+x2+1
4) 81x4+4
m.n giúp mik với, tks( PTĐTTNT)
BÀI 6 :rút gọn phân thức
\(\dfrac{x^3+3x^3+3x+1}{x^2+x}\)
b)\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
c)\(\dfrac{x^2+4x+4}{2x+4}\)
d)\(\dfrac{(x-1)(-x-2)}{x+2}\)
e)\(\dfrac{x^2-y^2}{x+y}\)
f)\(\dfrac{3x^2+4xy^2}{6x+8y}\)
g)\(\dfrac{-3x^2-6x}{4-x^2}\)
BÀI 7 :quy đồng mẫu thức các phân thức
\(\dfrac{2}{5x^3y^2}và \dfrac{3}{4xy}\)
b)\(\dfrac{x}{x^2-2xy+y^2} và \dfrac{x}{x^2-xy}\)
c)\(\dfrac{1}{x+2};\dfrac{2}{2x+4}và \dfrac{3}{3x+6}\)
d)\(\dfrac{1}{x+3};\dfrac{2}{2x-6}và \dfrac{3}{3x-9}\)
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
thực hiện phép chia bằng cách phân tích đa thức bị chia thành nhân tử
a, (16x^4-81):(2x+3)
b,(x^3 - 3x^2 + 3x - 1):(x^2-2x+1)
c,(18x^5+9x^4-3x^3+6x^2+3x+1):(6x^2+3x+1)
(x^2-1/2x):2x-(3x-1)^2.(3x-1)=0
(4x^4 + 3x3) : (-x^3) + (15x2 + 6x) : 3x =0