Đặt \(A=x^4-3x^3+6x^2-5x+3\)
Xét trường hợp \(A=\left(x^2+ax+1\right)\left(x^2+bx+3\right)\)
\(A=x^4+bx^3+3x^2+ax^3+abx^2+3ax+x^2+bx+3\)
\(A=x^4+x^3\left(b+a\right)+x^2\left(3+ab+1\right)+x\left(3a+b\right)+3\)
Đồng nhất hệ số ta có:
\(\Rightarrow\hept{\begin{cases}a+b=-3\\3+ab+1=6\\3a+b=-5\end{cases}\Rightarrow\hept{\begin{cases}a+3=-b\\ab=2\\3a+b=-5\end{cases}\Rightarrow}\hept{\begin{cases}a=-1\\b=-2\end{cases}}}\)
Vậy \(x^4-3x^3+6x^2-5x+3=\left(x^2-x+1\right)\left(x^2-2x+3\right)\)
Chúc bn hok tốt ##
\(x^4-3x^3+6x^2-5x+3\)
\(=x^4-2x^3+3x^2-x^3+2x^2-3x+x^2-2x+3\)
\(=\left(x^4-2x^3+3x^2\right)-\left(x^3+2x^2-3x\right)+\left(x^2-2x+3\right)\)
\(=x^2\left(x^2-2x+3\right)-x\left(x^2-2x+3\right)+\left(x^2-2x+3\right)\)
\(=\left(x^2-x+1\right)\left(x^2-2x+3\right)\)