Phần trắc nghiệm
Nội dung câu hỏi 1
Chọn khẳng định đúng.
Tâm của đường tròn đi qua ba điểm phân biệt A, B, C phân biệt không thẳng hàng là giao điểm của:
A. Ba đường trung tuyến ứng với ba cạnh của tam giác ABC.
B. Ba đường phân giác ứng với ba cạnh của tam giác ABC.
C. Ba đường trung trực ứng với ba cạnh của tam giác ABC.
D. Ba đường cao ứng với ba cạnh của tam giác ABC.
I.Trắc nghiệm(5 điểm) 1. Giá trị lớn nhất của biểu thức 2019 2 x x bằng: A.2020 B.2019 C.2018 D. 2019 2. Với x, y là số đo các góc nhọn. Chọn nội dung sai trong các câu sau: A. sin y tan y cos y B. 2 2 sin x cos y 1 C. cos x cot x sin x D. tan y.cot y 1 3. Cho
Ba tử tù ngồi trong 3 phòng giam khác nhau và đều sắp nhận án tử hình. Bộ trưởng đã lựa chọn ngẫu nhiên một người để ân xá tội.
Tên quản ngục biết là ai đã được ân xá nhưng nhất quyết không chịu nói. Tử tù A tò mò hỏi quản ngục rằng ai trong B và C sẽ bị tử hình.
“Nếu B được ân xá, hãy trả lời tôi là C. Nếu C được ân xá, hãy trả lời tôi là B. Nếu tôi được ân xá, hãy tung một đồng xu 2 mặt để quyết định xem trả lời tôi là B hay C”.
Quản ngục cho A biết tử tù B sẽ bị tử hình.
A sung sướng vì nghĩ rằng xác suất thoát chết của mình đã tăng từ 1/3 lên 1/2, bởi vì ban đầu là chọn ân xá giữa 3 người A, B, và C để đến bây giờ chỉ còn chọn giữa A và C.
A kể cho C nghe về việc này. C sung sướng vì cho rằng xác suất thoát chết của A vẫn là 1/3, còn xác suất thoát chết của C bây giờ là 2/3.
Hỏi ai sai ở đây?
Nghiệm của hệ phương trình 2 x - y = 3 - 5 x + 6 y = 1 là cặp số:
(A) (1; -1) (B) ( 2 ; 2 2 - 3)
(C) (1; 1) (D) 19 7 ; 17 7
Hãy chọn câu trả lời đúng.
Hai phương trình x 2 + a x + 1 = 0 v à x 2 - x - a = 0 có một nghiệm thực chung khi a bằng:
(A) 0 ; (B) 1 ; (C) 2 ; (D) 3
Hãy chọn câu trả lời đúng.
Hai phương trình x 2 + a x + 1 = 0 v à x 2 - x - a = 0 có một nghiệm thực chung khi a bằng:
(A) 0 ; (B) 1 ; (C) 2 ; (D) 3
Hãy chọn câu trả lời đúng.
CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾU
Câu 1. Chứng minh √7 là số vô tỉ.
Câu 2.
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
Câu 4.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 9.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 10. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
các bạn cho mình hỏi nếu mình vẽ hình đúng giả thiết đề bài cho, làm đúng câu a với b nhưng vẽ sai hình giả thiết câu c vào hình thì có bị mất điểm câu a,b k? tks các bạn
Câu 1. Chứng minh √7 là số vô tỉ.
Câu 2.
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
Câu 4.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 9.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 10. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
Câu 11. Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0