\(A=\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
\(=x^4+2x^2+1-4x+4x^3\)
\(=x^4+4x^3+2x^2-4x+1\)
\(=\left(x^4+2x^3-x^2\right)+\left(2x^3+4x^2-2x\right)-\left(x^2+2x-1\right)\)
\(=\left(x^2+2x-1\right)^2\)
( 1 + x2)2 - 4x ( 1 - x2 )
= x4 + 2x2 + 1 - 4x + 4x3
= x3 + 2x2 - x + 2x3 + 4x2 - 2x - x2 - 2x + 1
= x ( x2 + 2x - 1 ) + 2x ( x2 + 2x - 1 ) - ( x2 + 2x - 1 )
= ( x2 + 2x - 1 ) ( x2 + 2x - 1 )
= ( x2 + 2x - 1)2