Lời giải:
a. $x^4+x^2+1=x^4+2x^2+1-x^2=(x^2+1)^2-x^2$
$=(x^2+1-x)(x^2+1+x)$
b. $x^4+64y^4=x^4+16x^2y^2+64y^4-(4xy)^2$
$=(x^2+8y^2)^2-(4xy)^2=(x^2+8y^2-4xy)(x^2+8y^2+4xy)$
c.
$x^3+5x^2-2x-4=(x^3-x^2)+(6x^2-6x)+(4x-4)$
$=x^2(x-1)+6x(x-1)+4(x-1)$
$=(x-1)(x^2+6x+4)$
d.
$x^3+2x^2+6x+5=x^3+x^2+x^2+x+5x+5$
$=x^2(x+1)+x(x+1)+5(x+1)=(x+1)(x^2+x+5)$