= (a + b)3 + c3 + 3(a + b)c.(a + b + c)] - [(a + b)3 - c3 - 3(a+ b)c.(a + b - c)] - [c3 + (a - b)3 + 3c(a - b).(c + a - b)] - [c3 - (a - b)3 - 3c(a - b)(c - a + b)]
= 2.c3 + 3(a + b)c(a + b + c) + 3(a + b)c(a + b - c) - 2c3 - 3c(a - b)(c + a - b) + 3c(a - b)(c - a + b)
= 3(a+ b)2c + 3c2(a+ b) + 3(a+ b)2c - 3c2(a+ b) - 3c2(a - b) - 3c(a - b)2 + 3c2(a - b) - 3c(a - b)2
= 3(a + b)2c - 3c(a - b)2 = 3c.[(a + b)2 - (a - b)2] = 3c(a + b + a - b)(a + b- a + b) = 3c.2a.2b = 12abc
Ta có (a+b+c)3-(a+b-c)3-(c+a-b)3-(c-a+b)3
= (a + b)3 + c3 + 3(a + b)c.(a + b + c)] - [(a + b)3 - c3 - 3(a+ b)c.(a + b - c)] - [c3 + (a - b)3 + 3c(a - b).(c + a - b)] - [c3 - (a - b)3 - 3c(a - b)(c - a + b)]
= 2.c3 + 3(a + b)c(a + b + c) + 3(a + b)c(a + b - c) - 2c3 - 3c(a - b)(c + a - b) + 3c(a - b)(c - a + b)
= 3(a+ b)2c + 3c2(a+ b) + 3(a+ b)2c - 3c2(a+ b) - 3c2(a - b) - 3c(a - b)2 + 3c2(a - b) - 3c(a - b)2
= 3(a + b)2c - 3c(a - b)2
= 3c.[(a + b)2 - (a - b)2]
= 3c(a + b + a - b)(a + b- a + b)
= 3c.2a.2b
= 12abc
hok giỏi