1. \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+3x+1\right)\)
2. \(x^3-4x^2+12x-27\)
\(=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x^2-x+9\right)\left(x-3\right)\)
3. \(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)^2\)
\(=\left(x-1\right)^3\left(x+1\right)\)
d) \(x^4+2x^3+2x^2+2x+1\)
\(=x^4+x^2+2x^3+2x+x^2+1\)
\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+1\right)\)
\(=\left(x+1\right)^2\left(x^2+1\right)\)
1. x3 + 2x2 + 2x + 1
= x3 + x2 + x2 + x + x + 1
= x2(x + 1) + x(x + 1) + (x + 1)
= (x + 1)(x2 + x + 1)
2. x3 - 4x2 + 12x - 27
= x3 - 3x2 - x2 + 3x + 9x - 27
= x2(x - 3) - x(x - 3) + 9(x - 3)
= (x - 3)(x2 - x + 9)
3. x4 - 2x3 + 2x - 1
= x4 - x3 - x3 + x2 - x2 + x + x - 1
= x3(x - 1) - x2(x - 1) - x(x - 1) + (x - 1)
= (x - 1)(x3 - x2 - x + 1)
= (x - 1)[x(x2 - 1) - (x2 - 1)]
= (x - 1)(x2 - 1)(x - 1)
= (x - 1)2(x - 1)(x + 1)
= (x - 1)3(x + 1)
4. x4 + 2x3 + 2x2 + 2x + 1
= x4 + x3 + x3 + x2 + x2 + x + x + 1
= x3(x + 1) + x2(x + 1) + x(x + 1) + (x + 1)
= (x + 1)(x3 + x2 + x + 1)
= (x + 1)[x(x2 + 1) + (x2 + 1)]
= (x + 1)(x + 1)(x2 + 1)
= (x + 1)2(x2 + 1)
x4+2x3−2x2+2x−3=0⇔x4+3x3−x3−3x2+x2+3x−x−3=0⇔x3(x+3)−x2(x+3)+x(x+3)−(x+3)=0⇔(x+3)(x3−x2+x−1)=0⇔(x+3)[x2(x−1)+(x−1)]=0⇔(x+3)(x−1)(x2+1)=0⇔⎡⎣⎢x+3=0x−1=0x2+1=0⇔[x=−3x=1(vì x2+1≥1>0)x4+2x3−2x2+2x−3=0⇔x4+3x3−x3−3x2+x2+3x−x−3=0⇔x3(x+3)−x2(x+3)+x(x+3)−(x+3)=0⇔(x+3)(x3−x2+x−1)=0⇔(x+3)[x2(x−1)+(x−1)]=0⇔(x+3)(x−1)(x2+1)=0⇔[x+3=0x−1=0x2+1=0⇔[x=−3x=1(vì x2+1≥1>0)
Vậy ...
(x−1)(x2+5x−2)−x3+1=0⇔(x−1)(x2+5x−2)−(x3−1)=0⇔(x−1)(x2+5x−2)−(x−1)(x2+x+1)=0⇔(x−1)[(x2+5x−2)−(x2+x+1)]=0⇔(x−1)(4x−3)=0⇔[x−1=04x−3=0⇔⎡⎣x=1x=34(x−1)(x2+5x−2)−x3+1=0⇔(x−1)(x2+5x−2)−(x3−1)=0⇔(x−1)(x2+5x−2)−(x−1)(x2+x+1)=0⇔(x−1)[(x2+5x−2)−(x2+x+1)]=0⇔(x−1)(4x−3)=0⇔[x−1=04x−3=0⇔[x=1x=34
Vậy ...
x2+(x+2)(11x−7)=4⇔x2−4+(x+2)(11x−7)=0⇔(x+2)(x−2)+(11x−7)=0⇔(x+2)(x−2+11x−7)=0⇔(x+2)(12x−9)=0⇔3(x+2)(4x−3)=0⇔[x+2=04x−3=0⇔⎡⎣x=−2x=34
Vậy.......