\(=x+2\sqrt{xy}+y-9\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2-3^2\)
\(=\left(\sqrt{x}+\sqrt{y}-3\right)\left(\sqrt{x}+\sqrt{y}+3\right)\)
\(=x+2\sqrt{xy}+y-9\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2-3^2\)
\(=\left(\sqrt{x}+\sqrt{y}-3\right)\left(\sqrt{x}+\sqrt{y}+3\right)\)
Phân tích đa thức thành nhân tử:
a, \(3-\sqrt{3}+15-3\sqrt{5}\)
b,\(\sqrt{1-a}+\sqrt{1-a^2}\left(-1< a< 1\right)\)
c,\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\left(a>0,b>0\right)\)
d,\(x-y+\sqrt{y^2}-y^3\left(x,y>0\right)\)
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
Giải giúp mình nha
1/ Thực hiện phép tính
a) \(\sqrt{9-2\sqrt{20}}+\sqrt{12-2\sqrt{35}}\)
b) \(\sqrt{5-\sqrt{21}}-\sqrt{5+\sqrt{21}}\)
2/Rút gọn biểu thức
a) \(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{x^2-1}{x-3}\left(x< 3\right)\)
b) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\left(x>-2\right)\)
3/ Phân tích thành nhân tử
a) \(\sqrt{x}+\sqrt{y}-5\sqrt{xy}-5y\left(x,y\ge0\right)\)
b) \(x\sqrt{x}-y\sqrt{y}\left(x,y\ge0\right)\)
Phân tích đa thức thành nhân tử :
\(2x^2-3x\sqrt{x+3}+\left(x+3\right)=0\)
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
phân tích đa thức thành nhân tử xy-y\(\sqrt{x}\)+\(\sqrt{x}\)-1
1. Phân tích đa thức thành nhân tử
\(a)\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}(a>0,b>0)\)
\(b)x-y+\sqrt{xy^2}-\sqrt{y^3}(x>0,y>0)\)
phân tích đa tức thành nhân tử
a) 5+ \(\sqrt{x}\) + 25 - x
b) xy -x\(\sqrt{y}\) + \(\sqrt{y}\) - 1
c)\(\sqrt{a-b}\) - \(\sqrt{a^2-b^2}\)
d) \(\sqrt{ax}\) + \(\sqrt{by}\) - \(\sqrt{bx}\) -\(\sqrt{ay}\)
Giair hộ mình vs ạ!
2.Phân tích đa thức thành nhân tử:
a) \(3-\sqrt{3}+\sqrt{15}-3\sqrt{5}\)
b) \(\sqrt{1-a}+\sqrt{1-a^2}với\left(-1< a< 1\right)\)
c) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}với\left(a>0;b>0\right)\)
d) \(x-y+\sqrt{xy^2}-\sqrt{y^3}với\left(x>0;y>0\right)\)