\(x^4+2x^3+3x^2+2x+1.\)
\(=x^4+x^3+x^3+x^2+x^2+x^2+x+x+1\)
\(=x^4+x^3+x^2+x^3+x^2+x+x^2+x+1\)
\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x+1\right)^2+x\left(x+1\right)^2+\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left(x^2+x+1\right)\)
\(=\left(x+1\right)^2\left(x+1\right)^2\)
\(=\left(x+1\right)^4\)
@wi
\(x^2+x+1=\left(x+1\right)^2???\)
\(x^2+2x+1=\left(x+1\right)^2\)chứ
Éc t nhầm =,=
tek chắc bài nì sai r :) hoặc kquả tới đó thoy
\(=\left(x+1\right)^2\left(x^2+x+1\right).\)
đa thức x^4+2x^3+3x^2+2x+1 có dạng (x^2+ax+b)(x^2+cx+d)
khai triển =x^4+(a+c)x^3+(d+a+b)x^2+(ad+bc)x+db
đồng nhất :c+a=2
d+b+a=3⇒1+1+a=3⇒a=1
ad+bc=2⇒a+c=2⇒c=1
bd=1⇒b=1;d=1
thay vào (x^2+x+1)(x^2+x+1)=(x^2+x+1)^2