\(x^4+2019x^2+2018x+2019\)
\(=x^4+x^2+1+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
\(B=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt: \(x^2+7x+10=t\)Khi đó B trở thành:
\(B=t\left(t+2\right)-24\)
\(=t^2+2t-24=\left(t-4\right)\left(t+6\right)\)
đến đây bạn thay trở lại