Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dangtrungkhanh

phân tích đa thức thành nhân tử

a^3(b-c)+b^3(c-a)+c^3(a-b)

ST
13 tháng 8 2018 lúc 14:37

=a3(b-c)-b3(a-c)+c3(a-c-b+c)

=a3(b-c)-b3(a-c)+c3(a-c)-c3(b-c)

=(a3-c3)(b-c)-(b3-c3)(a-c)

=(a-c)(a2+ac+c2)(b-c)-(b-c)(b2+bc+c2)(a-c)

=(b-c)(a-c)(a2+ac+c2-b2-bc-c2)

=(b-c)(a-c)[(a-b)(a+b)+c(a-b)]

=(a-b)(b-c)(a-c)(a+b+c)

Doraemon
3 tháng 9 2018 lúc 8:08

Ta có:\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

\(=a^3\left(b-c\right)-b^3\left(a-c\right)+c^3\left(a-c-b+c\right)\)

\(=a^3\left(b-c\right)-b^3\left(a-c\right)+c^3\left(a-c\right)-c^3\left(b-c\right)\)

\(=\left(a^3-c^3\right)\left(b-c\right)-\left(b^3-c^3\right)\left(a-c\right)\)

\(=\left(a-c\right)\left(a^2+ac+c^2\right)\left(b-c\right)-\left(b-c\right)\left(b^2+bc+c^2\right)\left(a-c\right)\)

\(=\left(b-c\right)\left(a-c\right)\left(a^2+ac+c^2-b^2-bc-c^2\right)\)

\(=\left(b-c\right)\left(a-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)


Các câu hỏi tương tự
trần bảo anh
Xem chi tiết
Lê Việt Cường
Xem chi tiết
Lê Việt Cường
Xem chi tiết
ngọc hân
Xem chi tiết
Lê Việt Cường
Xem chi tiết
Lê Việt Cường
Xem chi tiết
Mai Ngọc Hà
Xem chi tiết
trâm lê
Xem chi tiết
Anh PVP
Xem chi tiết
Nguyễn Văn Nam
Xem chi tiết