a/ \(=64y^4+32xy^3+8y^2x^2-32xy^3-16x^2y^2-4x^3y+8x^2y^2+4x^3y+x^4\)
\(=8y^2\left(8y^2+4xy+x^2\right)-4xy\left(8y^2+4xy+x^2\right)+x^2\left(8y^2+4xy+x^2\right)\)
\(=\left(8y^2-4xy+x^2\right)\left(8y^2+4xy+x^2\right)\)
b/ \(=y^4+2xy^3+2x^2y^2-2xy^3-4x^2y^2-4x^3y+2x^2y^2+4x^3y+4x^4\)
\(=y^2\left(y^2+2xy+2x^2\right)-2xy\left(y^2+2xy+2x^2\right)+2x^2\left(y^2+2xy+2x^2\right)\)
\(=\left(y^2-2xy+2x^2\right)\left(y^2+2xy+2x^2\right)\)
c/ \(=x^4+5x^3+7x^2+5x^3+25x^2+35x+3x^2+15x+21\)
\(=x^2\left(x^2+5x+7\right)+5x\left(x^2+5x+7\right)+3\left(x^2+5x+7\right)\)
\(=\left(x^2+5x+3\right)\left(x^2+5x+7\right)\)
d/ \(=x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)