g) (x+2)(x+3)(x+4)(x+5)-24 = \(\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
=\(\left[x^2+7x+10\right]\left[x^2+7x+12\right]\)
đặt \(x^2+7x+10=a\)
ta có \(a\left(a+2\right)-24=a^2+2a-24\)
\(=a^2+2a+1-25\)
\(=\left(a+1\right)^2-5^2\)
\(=\left(a+1-5\right)\left(a+1+5\right)\)
\(=\left(a-4\right)\left(a+6\right)\)
\(\Rightarrow\) \(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
a) = (x +5)2 - 22 = (x+5 -2)(x+5 +2) = (x+3)(x+7)
b) = x(x2 -1) -6(x-1)= x(x+1)(x-1) -6(x-1) = (x-1)(x(x+1)-6)
a) \(x^2+10x+21=x^2+3x+7x+21\)
\(=x\left(x+3\right)+7\left(x+3\right)=\left(x+7\right)\left(x+3\right)\)
từ ý b đến ý e dùng chức lăng EQN của máy tính
bạn mở mt bấm mode rồi ấn 5 rồi tìm cái có ax3+bx2+cx+d
b) nhập 1 = ; 0 =;-7=;6= rồi ấn = sao cho hết nghiệm
có \(X_1=2;X_2=1;X_3=-3\)