a)=(x-√3)(x+√3)
b)=b√a(√a+1)+(√a+1)
=(√a+1)(b√a+1)
a)=(x-√3)(x+√3)
b)=b√a(√a+1)+(√a+1)
=(√a+1)(b√a+1)
phân tích đa thứ thành nhân từ
a)\(x\sqrt{x}+\sqrt{x}-x-1\)
b)\(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
1. Phân tích đa thức thành nhân tử
\(a)\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}(a>0,b>0)\)
\(b)x-y+\sqrt{xy^2}-\sqrt{y^3}(x>0,y>0)\)
Phân tích đa thức thành nhân tử
a) ab+b√a+√a+1
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
Phân tích các đa thức sau thành nhân tử
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
Phân tích đa thức thành nhân tử
a. 7-3a (a lớn hơn hoặc =0)
b.\(14x^2-11\)
c.3x-\(6\sqrt{x}\)-6
d.\(x\sqrt{x}-3\sqrt{x}-2\)
Phân tích đa thức thành nhân tử
a, AB+B\(\sqrt{A}\)+\(\sqrt{A}\)+ 1
b, \(\sqrt{x^3}\)- \(\sqrt{y^3}\)+ \(\sqrt{x^2y}\)- \(\sqrt{xy^2}\)
Phân tích các đa thức sau thành nhân tử
a, \(x\sqrt{x}+\sqrt{x}-x-1\)
b, \(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
c, \(\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)
d, \(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
f, \(x-2\sqrt{x-1}-a^2\)
e, \(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
Phân tích đa thức thành nhân tử:
a, \(3-\sqrt{3}+15-3\sqrt{5}\)
b,\(\sqrt{1-a}+\sqrt{1-a^2}\left(-1< a< 1\right)\)
c,\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\left(a>0,b>0\right)\)
d,\(x-y+\sqrt{y^2}-y^3\left(x,y>0\right)\)