a) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
\(=a^3b-a^3c+b^3\left(c-a\right)+c^3a-c^3b\)
\(=\left(a^3b-c^3b\right)+\left(c^3a-a^3c\right)+b^3\left(c-a\right)\)
\(=-b\left(c^3-a^3\right)+ca\left(c^2-a^2\right)+b^3\left(c-a\right)\)
\(=-b\left(c-a\right)\left(c^2-ac+a^2\right)+ca\left(c+a\right)\left(c-a\right)+b^3\left(c-a\right)\)
\(=\left(c-a\right)\left(-c^2b+abc-a^2b\right)+\left(c-a\right)\left(c^2a+ca^2\right)+b^3\left(c-a\right)\)
\(=\left(c-a\right)\left(-c^2b+abc-a^2b+c^2a+ca^2+b^3\right)\)
a) a3 (b-c) + b3 (c-a) +c3 (a-b)
<=> a3b – a3c +b3c – b3a + c3a – c3b
<=> b(a3 – c3) +c(a3 – b3) + a(b3 - c3)
(Tự áp dụng hằng đẳng thức)
b)