Đặt: \(x^2-6x+1=a;x^2+1=b\)
Khi đó đa thức này có dạng:
\(2a^2+5ab+2b^2=2a^2+4ab+ab+2b^2\)
\(=2a\left(a+2b\right)+b\left(a+2b\right)=\left(a+2b\right)\left(2a+b\right)\)
Thay lại a và b thì được:
\(\left(a+2b\right)\left(2a+b\right)=\left(x^2-6x+1+2x^2+2\right)\left(2x^2-12x+2+x^2+1\right)\)
\(=\left(3x^2-6x+3\right)\left(3x^2-12x+3\right)\)
\(=9\left(x-1\right)^2\left(x^2-4x+1\right)\)
Vậy ...