\(x\sqrt{y}-y\sqrt{x}=\sqrt{x^2}.\sqrt{y}-\sqrt{y^2}.\sqrt{x}=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(x\sqrt{y}-y\sqrt{x}=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
`x \sqrt{y} - y \sqrt{x}`
`= (\sqrt{x})^2 . \sqrt{y} - (\sqrt{y})^2 . \sqrt{x}`
`= \sqrt{x} . \sqrt{y} . (\sqrt{x} - \sqrt{y})`
`= \sqrt{xy} . (\sqrt{x} - \sqrt{y})`