1.Phân tích đa thức thành nhân tử:
a) \(x^3+\sqrt{3}x+6x^2+6\sqrt{3}x^2\)
b) \(x^4-6\sqrt{3}x+6x^3-36\sqrt{3}\)
c) \(x^5+\sqrt{3}x^5-y^5-\sqrt{3}y^5\)
Phân tích thành nhân tử (với a,b là các số không âm):
\(ab+b\sqrt{a}+\sqrt{a}+1\)
Bài 1: Trong tập hợp R, với x lớn hơn hoặc bằng 0, với y lớn hơn hoặc bằng 0, Hãy phân tích đa thức sau thành nhân tử:
a) \(x+2\sqrt{x}\), \(4x-8\sqrt{x}\), \(xy-2\sqrt{xy}\)
b) x - y , 4x - 9y , 1- xy
c) \(x-y+2\sqrt{x+1}\), \(x+1-2\sqrt{y-y}\)
d) \(x+5\sqrt{x-6}\), \(3x-8\sqrt{x+}5\), \(x+2\sqrt{x-3}\)
Bài 1:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, chứng minh rằng: \(2\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge5\)
Bài 2:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, z = max {x, y, z), chứng minh rằng: \(\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge4\)
Bài 3:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0 và x + y + z = 2,chứng minh rằng: \(\frac{x}{\sqrt{4x+3yz}}+\frac{y}{\sqrt{4y+3xz}}+\frac{z}{\sqrt{4z+3xy}}\le1\)
Bài 4:
Với x, y, z là các số thực dương, chứng minh rằng: \(\frac{a}{\sqrt{a^2+15bc}}+\frac{b}{\sqrt{b^2+15ca}}+\frac{c}{\sqrt{c^2+15ab}}\ge\frac{3}{4}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình!!! PLEASE!!!
Phân tích đa thức thành nhân tử : \(A=2xy+\sqrt{x}y+x\sqrt{y}\)
Phân tích đa thức thành nhân tử:
a) \(a+2\sqrt{ab}+b\)
b) \(x^2+2xy+y^2+x^2-y^2\)
1. phân tích đa thức thành nhân tử
a, x - 2 ( x> 0 )
b, \(3\sqrt{2}-2\sqrt{3}\)
c, x + 4 ( x < 0 )
d, \(a+b+2\sqrt{ab}\)( a, b >= 0 )
\(a+b-2\sqrt{ab}\) ( a, b >= 0 )
e, \(a\sqrt{a}-b\sqrt{b}\) ( a, b >= 0 )
Phân tích đa thức thành nhân tử
\(\dfrac{x^2}{4}\)-xy+y^2
x^2+x+\(\dfrac{1}{\text{4}}\)
x^2+2\(\sqrt{3}\)x+3
4x^2-1
1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6
2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
3.Cho biểu thức:
P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)
a) Rút gọn P
b) Cho a+b =1. Tìm giá trị nhỏ nhất của P
4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức
P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:
\(2xy^2+x+y+1=x^2+2y^2+xy\)
6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)
Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi.